Syntax 1 - The sentence patterns of language

Properties of Syntax

> infinite possible number of sentences
the man who knows my friend who knows the brother of the president \qquad
$>$ possible sentences based on the grammar of the language
$>$ certain universal properties of language contribute to syntactic structure in all languages

Grammatical or Ungrammatical?

$>$ some sentences are well-formed = grammatical
$>$ others are ill-formed $=$ ungrammatical (*)
$>$ grammaticality is based on the rules of the grammar of a language
$>$ different kinds of rules:

1. word order rules
2. subcategorization restrictions: transitive vs. intransitive, etc.
3. hierarchical structure

Grammaticality

$>$ Grammaticality is not based on:
> prior knowledge
$>$ meaning
$>$ truth of the utterance

What else do we know about syntax?

> structural ambiguity also possible in syntax, just as we discussed for unlockable, etc. in morphology
$>$ examples: a. flying planes can be dangerous
b. visiting relatives can be boring
$>$ tree structures in syntax just as in morphology
$>$ syntactic categories similar to morphological categories

Syntactic Rules

> Syntactic rules account for:
$>$ grammaticality of sentences
$>$ word order
> hierarchical structure (phrases)
$>$ grammatical relations (subject, object, etc.)
$>$ structural ambiguity
$>$ creativity

Sentence Structure

$>$ tree diagrams
$>$ similar to morphological structure
$>$ deals with words in a sentence instead of morphemes in a word

Compounds in the syntax

$>$ compounds can be used as elements in the syntax, e.g.

Syntactic Categories

$>$ trees group together constituents
$>$ different elements make up the constituents, such as the + child, in + the + garden, etc.

$>$ Noun (N), Verb (V), Adjective (ADJ), Preposition (P), etc. are basic syntactic categories
$>$ higher level categories: Noun phrases (NPs), Verb Phrases (VPs), Prepositional Phrases (PPs)
$>$ these are universal, occur in all languages

Phrase Structure Trees

$>$ similar to word structure trees, but the categories involve higher levels, such as the phrase and sentence
$>$ just as with morphological trees, there are mothers and daughters
$>$ also, trees are usually binary branching, that is two daughters for each mother

Properties of PS Trees

> three types of information that a speaker has about the syntax are represented in the tree:
$>$ linear order of elements of the sentence (linear precedence)
$>$ grouping of words (constituency)
$>$ hierarchical structure (immediate dominance)
$>$ categories dominated by the same (mother) node are sisters of each other and daughters of the higher node

Subcategorization

$>$ in some cases there may be more branches, e.g. when a verb has two complements:

$>$ the VP in such a case has three branches because the verb 'put' requires two complements, that is
put [something] [somewhere]
> this will depend on the verb; compare: give, pass, etc. vs. sleep, sneeze, etc.
$>$ this requirement is referred to as subcategorization

Heads and Complements

$>$ the head of a phrase is the element that determines the structure and what may occur in the phrase
$>$ nouns are the heads of NPs and decide what elements may co-occur with them inside the phrase, verbs are the heads of VPs and decide what other elements must appear in the VP, etc.
$>$ the elements that co-occur with the head inside a phrase are complements
$>$ in the sentence 'put the puppy in the garden', the verb put has two complements:

1. the puppy and $\quad 2$. in the garden
$>$ remember that these are required by the verb put
$>$ this property of requiring certain types of complements is referred to as selection
$>$ conditions on selection are called selectional restrictions

Selectional Restrictions

$>$ verbs that have only a subject are referred to as intransitive:
examples: sleep, snore, die, etc.
$>$ verbs that take one object, the direct object, are called transitive: examples: kick, eat, see, etc.
$>$ verbs that take two objects are called ditransitive: examples: give, feed, put, etc.
$>$ other verbs may require different kinds of complements:
example: wonder, think, etc.

Head of the Sentence

$>$ S (sentence) is headed by Aux(iliary)
$>$ alternatively, we can refer to S as IP (Inflectional Phrase) and Aux as INFL(ection)
$>$ this is the same inflection that we discussed in morphology
$>$ involves syntactic inflection, including modal verbs \& endings like 3rd person singular present tense /-s/

The Infiniteness of Language

$>$ based on sentences being built up from smaller units into increasingly larger units
$>$ referred to as recursion and allows the repetition of categories that are contained in other categories
\Rightarrow thus, $\mathrm{NP} \rightarrow$ Det N PP $\quad \mathrm{PP} \rightarrow \mathrm{P}$ NP
$>$ therefore: $\mathrm{NP} \rightarrow$ Det N PP
P NP
Det N PP
P NP ... etc.

