we can divide English consonants into two subgroups, *obstruents* and *sonorants*

obstruents are consonants that are formed by obstructing the airflow, causing increased air pressure in the vocal tract

sonorants involve no turbulent airflow in the vocal tract

the English obstruent consonants include the plosives, fricatives and affricates

obstruents involve either a total closure of the vocal tract or a partial closure, i.e., a stricture causing friction

obstruents may be subdivided into:
- *plosives*, which involve a complete closure followed by an ``explosive" release of air
- *fricatives*, with only limited closure, i.e., a sufficient degree of closure to cause friction
- *affricates*, with a total closure followed by a fricative release

obstruents are typically voiceless, though voiced obstruents are common

English Plosives

- English plosives consist of voiced and voiceless pairs of consonants
- they occur at the labial, alveolar, and velar points of articulation
- there is also a glottal stop, that occurs in various positions in different dialects

Labial Plosives

- the labial plosives, /p/ and /b/, may have several different realizations in English
- this depends on the position where they occur
- when voiceless /p/ is initial in a stressed syllable, as in *paper* or *popular*, it is fairly strongly aspirated, symbolized [pʰ]
- the aspiration is clear in the following spectrogram at 0.5-0.6s
- it appears as high-intensity noise in the range of 3,000-5,000Hz
- the presence of aspiration in such forms is a crucial aspect of English
- the word `peas', as pronounced by a native speaker of English, clearly shows the aspiration from 0.05-0.1s
- it is absent in the pronunciation of the [p] (~0.06s) in the word `peas' spoken by the French speaker
- this clearly marks a non-native speaker of English

- the English voiceless bilabial plosive is not always aspirated: after [s], it shows no aspiration
- the stop gap from 140-210ms, indicates the [p]
- there is almost no turbulence following this
- this is typical of an English voiceless plosive after [s]
- there is a third variety that appears at the end of the syllable, referred to as unreleased [p']
• examine the word *scoop:* from 300ms, there is nothing; the plosive is unreleased; all we can see is the labial effect on the vowel
• English also has a voiced bilabial plosive, [b]
• voicing is not strong in English, as shown in the spectrogram of *Bob*
• compare the voicing with that of a French speaker
• the stop gap is much larger in the French pronunciation (English 75ms, French 120ms)
• also the voicing bar is higher (English 550Hz, French 700Hz)

English speaker

French speaker

• for English, aspiration is a more significant marker of the distinction between voiced and voiceless obstruents

Alveolar Plosives
• like the labial plosives, English has a contrastive voicing distinction among the alveolar plosives, /t/ vs /d/
• voiceless /t/ in initial position is aspirated, [tʰ]
• the same comments regarding aspiration of the [pʰ] hold for [tʰ]
• similarly, /t/ following [s] is unaspirated, thus [t], as shown in the word *store*
• notice the absence of aspiration on the [t] in *store*, just as with the [p] in *spoons*
• the stop gap is from 150ms-182ms, followed by a very brief burst
• if you compare this with the aspiration in *toy*, it is easy to see the difference
• as with the voiceless bilabial, there is also an unreleased version of /t/ found at the end of the syllable
• it is represented as [t’]
• there are also other variants that appear in certain dialects
• these include the glottal stop, [ʔ], commonly found in British English varieties, and the alveolar flap, [ɾ], found in North American dialects
• before leaving the alveolar plosives, we should examine the voiced alveolar plosive, /d/
• /d/ is not strongly voiced, much less voiced than French /d/
• an example of English [d] is the word *dude*
• the voicing, and the stop overall, is very brief
• compare the initial [d] in *dude* with the final [d]
• the final [d] is about 75ms long and its voicing bar reaches approximately 500Hz, much like [b]
• the voiced alveolar plosive may also appear as a flap [ɾ] in intervocalic position in NA English

Velar Plosives
• the velar plosives, voiceless /k/ and voiced /ɡ/, appear in the same varieties as the bilabial plosives
• in word- or syllable-initial stressed position, the voiceless velar plosive is aspirated, [kʰ]
• when preceded by [s], it has the same properties as the other plosives discussed so far, as shown by the spectrogram of **scoop**
• note the brief aspiration from 190-215ms
• this much less than that for **call**, where aspiration ranges from approximately 35-90ms

Glottal Stop
• one final stop acts as an allophonic variant of /t/ in some contexts
• the glottal stop is invariably voiceless
• when producing [ʔ], the vocal cords are held tightly together, preventing vibration
• the glottal stop is realized as a gap in the flow of sound, as in the London form for **little**

Preglottalization
• [ʔ] may occur as preglottalization on consonants at the end of the syllable
• the final use of glottal stop appears in North American English, and is similar to the case of preglottalization
• it applies to forms having a syllabic alveolar nasal preceded by a voiceless alveolar plosive
• words like **button, cotton, and kitten**, but not in **sudden, happen, bottom, little, or butter**
• it only happens with syllabic alveolar nasals preceded by voiceless alveolar plosives
• a spectrogram of the word **button**, [bʌʔn̩] shows this:

English Fricatives
• English fricatives include [f, θ, s, ʃ, h, v, ð, z, ʒ]
• this is a large set of fricatives typologically: few languages have so many contrastive fricatives
• Korean has only two, or three, depending on the dialect: [s, s', h]

Labiodental Fricatives
• there are two contrastive labiodental fricatives in English, the voiceless [f] and the voiced [v]
• their typical properties include high frequency turbulence concentrated above 4,000 Hz
• words such as **fox, file**, and **frame** begin with [f], while **tough, half, and stuff** end with [f]
• there is no voicing bar with [f]
• the voiced labiodental fricative also shows high frequency turbulence focused above 4,000 Hz
• there is a substantial voicing bar occupying approximately the lower 400 Hz
• words beginning with [v] include **vie, valve, view**, while words ending with [v] include **halve, live, cove**

Interdental Fricatives
• Interdental fricatives are not common in the languages of the world
• English has both voiceless and voiced variants
• [θ] is found as the first sound in words such as **think, thigh** and **thought**
• as the last sound of words such as **both, path** and **with**
• energy begins low (2500hz)
• the voiced counterpart, [ð], occurs as the first sound in words such as **though, that** and **they**
as the last sound in words such as *bathe*, *betroth* and *soothe*

Alveolar Fricatives
- English also has alveolar fricatives, [s] and [z]
- the most common crosslinguistically
- the bulk of the turbulence occurs above 3500Hz
- With [z] there is a voicing bar

Alveo-Palatal Fricatives
- English has both voiceless and voiced alveopalatal fricatives, [ʃ] and [ʒ]
- the range of turbulence for both of these is from around 2000 Hz up to 10,000 Hz

Glottal Fricative
- the final English fricative is voiceless glottal [h]
- there is no voicing bar for [h]
- its turbulence appears to be strongest around 1,000 Hz

Sibilants
- fricatives can be divided into sibilants versus non-sibilants
- this distinction appears in the rules for forming the plural and other rules involving a suffix with /-s/ or /-z/
- sibilants involve a turbulent airstream that strikes an obstacle, such as the teeth
- non-sibilants involve turbulence at the site of constriction
- sibilants tend to be louder than non-sibilants
- most of their acoustic energy occurs at higher frequencies
- for instance, [s] has acoustic energy starting at around 3,500 Hz, and reaching as high as 10,000 Hz
- [ʃ] has most of its acoustic energy at around 4,000 Hz, extending up to around 8,000 Hz
- the English sibilants include [s,ʃ, z, ʒ]

English Affricates
- the English affricates include both voiceless, [tʃ], and voiced, [dʒ], alveopalatal affricates
- *lecher* illustrates the voiceless alveopalatal affricate, [tʃ] and *ledger* shows the voiced variant, [dʒ]

<table>
<thead>
<tr>
<th>Fricative</th>
<th>Frequency Range</th>
<th>Intensity</th>
<th>Sibilant</th>
<th>Voicing Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>5000Hz and above</td>
<td>low</td>
<td>no</td>
<td>none</td>
</tr>
<tr>
<td>v</td>
<td>5000Hz and above</td>
<td>low</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>θ</td>
<td>2500Hz and above</td>
<td>low</td>
<td>no</td>
<td>none</td>
</tr>
<tr>
<td>δ</td>
<td>2500Hz and above</td>
<td>low</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>s</td>
<td>3500 and above</td>
<td>high</td>
<td>yes</td>
<td>none</td>
</tr>
<tr>
<td>z</td>
<td>3500 and above</td>
<td>high</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>ñ</td>
<td>2000 and above</td>
<td>high</td>
<td>yes</td>
<td>none</td>
</tr>
<tr>
<td>ñ</td>
<td>2000 and above</td>
<td>high</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>ñ</td>
<td>750 Hz-3000</td>
<td>low</td>
<td>no</td>
<td>none</td>
</tr>
</tbody>
</table>