English Phonetics

English Obstruents
• we can divide English consonants into two subgroups, *obstruents* and *sonorants*
we can divide English consonants into two subgroups, *obstruents* and *sonorants*

obstruents are consonants that are formed by obstructing the airflow, causing increased air pressure in the vocal tract
we can divide English consonants into two subgroups, obstruents and sonorants

obstruents are consonants that are formed by obstructing the airflow, causing increased air pressure in the vocal tract

sonorants involve no turbulent airflow in the vocal tract
we can divide English consonants into two subgroups, *obstruents* and *sonorants*

obstruents are consonants that are formed by obstructing the airflow, causing increased air pressure in the vocal tract

sonorants involve no turbulent airflow in the vocal tract

the English obstruent consonants include the plosives, fricatives and affricates
• obstruents involve either a total closure of the vocal tract or a partial closure, i.e., a stricture causing friction
• obstruents involve either a total closure of the vocal tract or a partial closure, i.e., a stricture causing friction
• obstruents may be subdivided into:
• obstruents involve either a total closure of the vocal tract or a partial closure, i.e., a stricture causing friction
• obstruents may be subdivided into:
 • *plosives*, which involve a complete closure followed by an “explosive” release of air
• obstruents involve either a total closure of the vocal tract or a partial closure, i.e., a stricture causing friction
• obstruents may be subdivided into:
 • *plosives*, which involve a complete closure followed by an “explosive” release of air
 • *fricatives*, with only limited closure, i.e., a sufficient degree of closure to cause friction
• obstruents involve either a total closure of the vocal tract or a partial closure, i.e., a stricture causing friction
• obstruents may be subdivided into:
 • *plosives*, which involve a complete closure followed by an “explosive” release of air
 • *fricatives*, with only limited closure, i.e., a sufficient degree of closure to cause friction
 • *affricates*, with a total closure followed by a fricative release
• obstruents involve either a total closure of the vocal tract or a partial closure, i.e., a stricture causing friction
• obstruents may be subdivided into:
 • *plosives*, which involve a complete closure followed by an “explosive” release of air
 • *fricatives*, with only limited closure, i.e., a sufficient degree of closure to cause friction
 • *affricates*, with a total closure followed by a fricative release
• obstruents are typically voiceless, though voiced obstruents are common
English Obstruent System

<table>
<thead>
<tr>
<th>Category</th>
<th>Vl.</th>
<th>Vd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plosives</td>
<td>p</td>
<td>t</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>Fricatives</td>
<td>f θ sʃ h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v ʒ z ʒ</td>
<td></td>
</tr>
<tr>
<td>Affricates</td>
<td>tʃ dB</td>
<td></td>
</tr>
</tbody>
</table>

This table represents the English obstruent system, which includes plosives, fricatives, and affricates.
English Plosives

- English plosives consist of voiced and voiceless pairs of consonants
English Plosives

• English plosives consist of voiced and voiceless pairs of consonants
• they occur at the labial, alveolar, and velar points of articulation
English Plosives

• English plosives consist of voiced and voiceless pairs of consonants
• they occur at the labial, alveolar, and velar points of articulation
• there is also a glottal stop, that occurs in various positions in different dialects
• the labial plosives, /p/ and /b/, may have several different realizations in English
Labial Plosives

• the labial plosives, /p/ and /b/, may have several different realizations in English
• this depends on the position where they occur
• the labial plosives, /p/ and /b/, may have several different realizations in English
• this depends on the position where they occur
• when voiceless /p/ is initial in a stressed syllable, as in paper or popular, it is fairly strongly aspirated, symbolized [pʰ]
• the labial plosives, /p/ and /b/, may have several different realizations in English
• this depends on the position where they occur
• when voiceless /p/ is initial in a stressed syllable, as in paper or popular, it is fairly strongly aspirated, symbolized [pʰ]
• the aspiration is clear in the following spectrogram at 0.5-0.6s
• the labial plosives, /p/ and /b/, may have several different realizations in English
• this depends on the position where they occur
• when voiceless /p/ is initial in a stressed syllable, as in paper or popular, it is fairly strongly aspirated, symbolized \([p^h]\)
• the aspiration is clear in the following spectrogram at 0.5-0.6s
• it appears as high-intensity noise in the range of 3,000-5,000Hz
'paper'
• the presence of aspiration in such forms is a crucial aspect of English phonetics
Foreign Accent

• the presence of aspiration in such forms is a crucial aspect of English phonetics
• the word *peas*, as pronounced by a native speaker of English, clearly shows the aspiration from 0.05-0.1s
Foreign Accent

• the presence of aspiration in such forms is a crucial aspect of English phonetics
• the word *peas*, as pronounced by a native speaker of English, clearly shows the aspiration from 0.05-0.1s
• it is absent in the pronunciation of the [p] (~0.06s) in the same word spoken by a French speaker
• the presence of aspiration in such forms is a crucial aspect of English phonetics
• the word *peas*, as pronounced by a native speaker of English, clearly shows the aspiration from 0.05-0.1s
• it is absent in the pronunciation of the \[p\] (~0.06s) in the same word spoken by a French speaker
• this clearly marks a non-native speaker of English
English Speaker

French Speaker

English Obstruents
• the English voiceless bilabial plosive is not always aspirated
• the English voiceless bilabial plosive is not always aspirated
• after [s], it shows no aspiration
• the English voiceless bilabial plosive is not always aspirated
• after [s], it shows no aspiration
• the stop gap from 140-210ms, indicates the [p]
• the English voiceless bilabial plosive is not always aspirated
• after [s], it shows no aspiration
• the stop gap from 140-210ms, indicates the [p]
• there is almost no turbulence following this until the vowel begins at 230ms
• the English voiceless bilabial plosive is not always aspirated
• after [s], it shows no aspiration
• the stop gap from 140-210ms, indicates the [p]
• there is almost no turbulence following this until the vowel begins at 230ms
• this is typical of an English voiceless plosive after [s]
• there is a third variety that appears at the end of the syllable
• there is a third variety that appears at the end of the syllable
• it is referred to as unreleased [p̚]
• there is a third variety that appears at the end of the syllable
• it is referred to as unreleased [p̚]
• examine the word *scoop*
• from 300ms, there is nothing
• there is a third variety that appears at the end of the syllable
• it is referred to as unreleased \([p^\text{'}\]\)
• examine the word *scoop*
• from 300ms, there is nothing
• the plosive is unreleased
• there is a third variety that appears at the end of the syllable
• it is referred to as unreleased [p̚]
• examine the word *scoop*
• from 300ms, there is nothing
• the plosive is unreleased
• all we can see is the labial effect on the vowel
• English also has a voiced bilabial plosive, [b]
• English also has a voiced bilabial plosive, [b]
• voicing is not strong in English, as shown in the spectrogram of the word, *Bob*
• English also has a voiced bilabial plosive, [b]
• voicing is not strong in English, as shown in the spectrogram of the word, Bob
• compare the voicing with that of a French speaker
• English also has a voiced bilabial plosive, [b]
• voicing is not strong in English, as shown in the spectrogram of the word, *Bob*
• compare the voicing with that of a French speaker
• the stop gap is much larger in the French pronunciation (English 75ms, French 120ms)
• English also has a voiced bilabial plosive, [b]
• voicing is not strong in English, as shown in the spectrogram of the word, *Bob*
• compare the voicing with that of a French speaker
• the stop gap is much larger in the French pronunciation (English 75ms, French 120ms)
• also the voicing bar is higher (English 550Hz, French 700Hz)
• English also has a voiced bilabial plosive, [b]
• voicing is not strong in English, as shown in the spectrogram of the word, *Bob*
• compare the voicing with that of a French speaker
• the stop gap is much larger in the French pronunciation (English 75ms, French 120ms)
• also the voicing bar is higher (English 550Hz, French 700Hz)
• for English, aspiration is a more significant marker of the distinction between voiced and voiceless obstruents
English speaker

French speaker

Stop Gap

Stop Gap

English Obstruents
Alveolar Plosives

• like the labial plosives, English has a contrastive voicing distinction among the alveolar plosives, /t/ versus /d/
Alveolar Plosives

- like the labial plosives, English has a contrastive voicing distinction among the alveolar plosives, /t/ versus /d/
- voiceless /t/ in initial position is aspirated, [tʰ], like voiceless /p/
• the same comments regarding aspiration of the \([p^h]\) hold for \([t^h]\)
• the same comments regarding aspiration of the \(\text{[pʰ]} \) hold for \(\text{[tʰ]} \).
• /t/ following [s] is unaspirated, thus [t], as shown in the word ‘store’.
• the same comments regarding aspiration of the \([p^h]\) hold for \([t^h]\)
• /t/ following \([s]\) is unaspirated, thus \([t]\), as shown in the word \textit{store}
• notice the absence of aspiration on the \([t]\) in \textit{store}, just as with the \([p]\) in \textit{spoons}
the same comments regarding aspiration of the \([p^h] \) hold for \([t^h] \)

/t/ following \([s]\) is unaspirated, thus \([t]\), as shown in the word \textit{store}

notice the absence of aspiration on the \([t]\) in \textit{store}, just as with the \([p]\) in \textit{spoons}

the stop gap is from 150\,ms-182\,ms, followed by a very brief burst

\textit{store}
the same comments regarding aspiration of the \([p^h]\) hold for \([t^h]\)

\(/t/\) following \([s]\) is unaspirated, thus \([t]\), as shown in the word \textit{store}

notice the absence of aspiration on the \([t]\) in \textit{store}, just as with the \([p]\) in \textit{spoons}

the stop gap is from 150ms-182ms, followed by a very brief burst

if you compare this with the aspiration in \textit{toy}, it is easy to see the difference
as with the voiceless bilabial, there is also an unreleased version of /t/
• as with the voiceless bilabial, there is also an unreleased version of /t/ found at the end of the syllable

‘meet’
• as with the voiceless bilabial, there is also an unreleased version of /t/ found at the end of the syllable
• it is represented as [tʰ]
• in addition to these three phonetic realizations of /t/, there are also other variants that appear in certain dialects
in addition to these three phonetic realizations of /t/, there are also other variants that appear in certain dialects

these include the glottal stop, [ʔ], commonly found in British English varieties, and the alveolar flap, [ɾ], found in North American dialects
• in addition to these three phonetic realizations of /t/, there are also other variants that appear in certain dialects
• these include the glottal stop, [ʔ], commonly found in British English varieties, and the alveolar flap, [ɾ], found in North American dialects
• these are not strictly alveolar plosives
in addition to these three phonetic realizations of /t/, there are also other variants that appear in certain dialects
• these include the glottal stop, [ʔ], commonly found in British English varieties, and the alveolar flap, [ɾ], found in North American dialects
• these are not strictly alveolar plosives
• they will be discussed later
before leaving the alveolar plosives, we should examine the voiced alveolar plosive, /d/
• before leaving the alveolar plosives, we should examine the voiced alveolar plosive, /d/
• /d/ is not strongly voiced
• before leaving the alveolar plosives, we should examine the voiced alveolar plosive, /d/
• /d/ is not strongly voiced
• it is much less voiced than French /d/
• before leaving the alveolar plosives, we should examine the voiced alveolar plosive, /d/
• /d/ is not strongly voiced
• it is much less voiced than French /d/
• an example of English [d] is the word *dude*
• before leaving the alveolar plosives, we should examine the voiced alveolar plosive, /d/
• /d/ is not strongly voiced
• it is much less voiced than French /d/
• an example of English [d] is the word *dude*
• the voicing, and the stop overall, is very brief
• before leaving the alveolar plosives, we should examine the voiced alveolar plosive, /d/
• /d/ is not strongly voiced
• it is much less voiced than French /d/
• an example of English [d] is the word *dude*
• the voicing, and the stop overall, is very brief
• compare the initial [d] in *dude* with the final [d]
• the final [d] is about 75ms long and its voicing bar reaches approximately 500Hz, much like [b]
the final [d] is about 75ms long and its voicing bar reaches approximately 500Hz, much like [b].

the voiced alveolar plosive may also appear as a flap [ɾ] in intervocalic position in NA English.
the velar plosives, voiceless /k/ and voiced /ɡ/, appear in the same varieties as the bilabial plosives
the velar plosives, voiceless /k/ and voiced /ɡ/, appear in the same varieties as the bilabial plosives

in word- or syllable-initial stressed position, the voiceless velar plosive is aspirated, [kʰ]
• when preceded by [s], it has the same properties as the other plosives discussed so far, as shown by the spectrogram of *scoop*
• when preceded by [s], it has the same properties as the other plosives discussed so far, as shown by the spectrogram of *scoop*
• note the brief aspiration from 190-215ms
• when preceded by [s], it has the same properties as the other plosives discussed so far, as shown by the spectrogram of *scoop*
• note the brief aspiration from 190-215ms
• this is much less than for *call*, where aspiration ranges from approximately 35-90ms
Glottal Stop

• one final stop acts as an allophonic variant of /t/ in some contexts
Glottal Stop

• one final stop acts as an allophonic variant of /t/ in some contexts
• the glottal stop is invariably voiceless
Glottal Stop

• one final stop acts as an allophonic variant of /t/ in some contexts
• the glottal stop is invariably voiceless
• when producing [ʔ], the vocal cords are held tightly together, preventing vibration
Glottal Stop

- one final stop acts as an allophonic variant of /t/ in some contexts
- the glottal stop is invariably voiceless
- when producing [ʔ], the vocal cords are held tightly together, preventing vibration
- the glottal stop is realized as a gap in the flow of sound, as in the London form for *little*
• [ʔ] may also occur as preglottalization on consonants at the end of the syllable

a. quite good \([kwɑʈ ˈɡʊd]\)
b. look down \([luʔk ˈdɔŋ\]
c. happen \([hæʔpəŋ\]

English Obstruents
• the final use of glottal stop appears in North American English, and is similar to the case of preglottalization
• the final use of glottal stop appears in North American English, and is similar to the case of preglottalization
• it applies to forms having a syllabic alveolar nasal preceded by a voiceless alveolar plosive
• the final use of glottal stop appears in North American English, and is similar to the case of preglottalization
• it applies to forms having a syllabic alveolar nasal preceded by a voiceless alveolar plosive
• words like button, cotton, and kitten, but not in sudden, happen, bottom, little, or butter
• it only happens with syllabic alveolar nasals preceded by voiceless alveolar plosives
• a spectrogram of the word button, [bʌʔn] shows this:
English Fricatives

• English fricatives include \([f, \theta, s, \mathbf{s}, h, v, \mathbf{ð}, z, ʒ}\)
English Fricatives

- English fricatives include [f, θ, s, ʃ, h, v, ð, z, ʒ]
- this is a large set of fricatives typologically
English Fricatives

• English fricatives include \([f, \theta, s, \, \, j, h, v, \partial, z, ʒ]\)
• this is a large set of fricatives typologically
• few languages have so many contrastive fricatives
English Fricatives

• English fricatives include [f, θ, s, ʃ, h, v, ʒ, z, ʒ]
• this is a large set of fricatives typologically
• few languages have so many contrastive fricatives
• Korean has only two, or three, depending on the dialect: [s, s’, h]
there are two contrastive labiodental fricatives in English, the voiceless [f] and the voiced [v]
there are two contrastive labiodental fricatives in English, the voiceless [f] and the voiced [v]
their typical properties include high frequency turbulence concentrated above 4,000 Hz
• there are two contrastive labiodental fricatives in English, the voiceless [f] and the voiced [v]
• their typical properties include high frequency turbulence concentrated above 4,000 Hz
• words such as *fox*, *file*, and *frame* begin with [f], while *tough*, *half*, and *stuff* end with [f]
Labiodental Fricatives

• there are two contrastive labiodental fricatives in English, the voiceless [f] and the voiced [v]
• their typical properties include high frequency turbulence concentrated above 4,000 Hz
• words such as fox, file, and frame begin with [f], while tough, half, and stuff end with [f]
• there is no voicing bar with [f]
English Obstruents
• the voiced labiodental fricative also exhibits high frequency turbulence concentrated above 4,000 Hz
• the voiced labiodental fricative also exhibits high frequency turbulence concentrated above 4,000 Hz
• there is a substantial voicing bar occupying approximately the lower 400 Hz
• the voiced labiodental fricative also exhibits high frequency turbulence concentrated above 4,000 Hz
• there is a substantial voicing bar occupying approximately the lower 400 Hz
• words beginning with [v] include *vie, valve* and *view*, while words ending with [v] include *halve, live* and *cove*
• Interdental fricatives are not common in the languages of the world
Interdental Fricatives

- Interdental fricatives are not common in the languages of the world
- English has both voiceless and voiced variants
• Interdental fricatives are not common in the languages of the world
• English has both voiceless and voiced variants
• [θ] is found as the first sound in words such as think, thigh and thought
• Interdental fricatives are not common in the languages of the world
• English has both voiceless and voiced variants
• [θ] is found as the first sound in words such as *think*, *thigh* and *thought*
• as the last sound of words such as *both*, *path* and *with*
- Energy begins low (2500hz)
• the voiced counterpart, [ð], occurs as the first sound in words such as *though*, *that* and *they*
• the voiced counterpart, [ð], occurs as the first sound in words such as *though*, *that* and *they*
• as the last sound in words such as *bathe*, *betroth* and *soothe*
• English also has alveolar fricatives, [s] and [z]
English also has alveolar fricatives, [s] and [z] and they are the most common crosslinguistically.
English also has alveolar fricatives, [s] and [z]
the most common crosslinguistically
the bulk of the turbulence occurs above 3500Hz
• With [z] there is a voicing bar

[aza]
• English has both voiceless and voiced alveopalatal fricatives, [ʃ] and [ʒ]
Alveo-Palatal Fricatives

• English has both voiceless and voiced alveopalatal fricatives, [ʃ] and [ʒ]
• the range of turbulence for both of these is from around 2000 Hz up to 10,000 Hz
[a3a]
• the final English fricative is voiceless glottal [h]
• the final English fricative is voiceless glottal [h]
• there is no voicing bar for [h]
• the final English fricative is voiceless glottal [h]
• there is no voicing bar for [h]
• its turbulence appears to be strongest around 1,000 Hz
Sibilants

• fricatives can be divided into sibilants versus non-sibilants
• fricatives can be divided into sibilants versus non-sibilants
• this distinction appears in the rules for forming the plural and other rules involving a suffix with the shape /-s/ or /-z/
Sibilants

• fricatives can be divided into sibilants versus non-sibilants
• this distinction appears in the rules for forming the plural and other rules involving a suffix with the shape /-s/ or /-z/
• sibilants involve a turbulent airstream that strikes an obstacle, such as the teeth
Sibilants

• fricatives can be divided into sibilants versus non-sibilants
• this distinction appears in the rules for forming the plural and other rules involving a suffix with the shape /-s/ or /-z/
• sibilants involve a turbulent airstream that strikes an obstacle, such as the teeth
• non-sibilants involve turbulence generated at the site of the constriction
sibilants tend to be louder than their non-sibilant counterparts
Sibilants 2

• sibilants tend to be louder than their non-sibilant counterparts
• most of their acoustic energy occurs at higher frequencies
• sibilants tend to be louder than their non-sibilant counterparts
• most of their acoustic energy occurs at higher frequencies
• for instance, [s] has acoustic energy starting at around 3,500 Hz, and reaching as high as 10,000 Hz
• sibilants tend to be louder than their non-sibilant counterparts
• most of their acoustic energy occurs at higher frequencies
• for instance, [s] has acoustic energy starting at around 3,500 Hz, and reaching as high as 10,000 Hz
• [ʃ] has most of its acoustic energy at around 4,000 Hz, extending up to around 8,000 Hz
• sibilants tend to be louder than their non-sibilant counterparts
• most of their acoustic energy occurs at higher frequencies
• for instance, [s] has acoustic energy starting at around 3,500 Hz, and reaching as high as 10,000 Hz
• [ʃ] has most of its acoustic energy at around 4,000 Hz, extending up to around 8,000 Hz
• the English sibilants include [s, ŋ, z, ʒ]
Fricative Properties

<table>
<thead>
<tr>
<th>Fricative</th>
<th>Frequency Range</th>
<th>Intensity</th>
<th>Voicing Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>5000Hz and above</td>
<td>low</td>
<td>no</td>
</tr>
<tr>
<td>v</td>
<td>5000Hz and above</td>
<td>low</td>
<td>yes</td>
</tr>
<tr>
<td>θ</td>
<td>2,500Hz and above</td>
<td>low</td>
<td>no</td>
</tr>
<tr>
<td>ð</td>
<td>2,500Hz and above</td>
<td>low</td>
<td>yes</td>
</tr>
<tr>
<td>s</td>
<td>3,500Hz and above</td>
<td>high</td>
<td>no</td>
</tr>
<tr>
<td>z</td>
<td>3,500Hz and above</td>
<td>high</td>
<td>yes</td>
</tr>
<tr>
<td>ß</td>
<td>2,000Hz and above</td>
<td>high</td>
<td>no</td>
</tr>
<tr>
<td>ð</td>
<td>2,000Hz and above</td>
<td>high</td>
<td>yes</td>
</tr>
<tr>
<td>h</td>
<td>750Hz-3000Hz</td>
<td>low</td>
<td>no</td>
</tr>
</tbody>
</table>
the English affricates include both voiceless, [ʧ], and voiced, [ʤ], alveopalatal affricates
English Affricates

- the English affricates include both voiceless, [ʧ], and voiced, [ʤ], alveopalatal affricates
- *lecher* illustrates the voiceless alveopalatal affricate, [ʧ] and *ledger* shows the voiced variant, [ʤ]
lecher ledger
The End